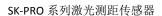

SK-Pro 系列 工业级 激光测距传感器


SK-Pro 系列激光测距传感器采用激光相位法测距原理。可以通过激光的发射和接收,以非接触方式快速而准确的测量到自然目标之间的距离值。突出优点是室外强光下,最远可测 100m; 30ms 快速响应下的精度差误达 1mm。

广泛应用于轨道变形测量、港口、恶劣工况环境下的高精度测量。

优点特征

- 兼备: 量程远 100m, 精度高 1mm, 分辨率 0.1mm, 测量快 30Hz
- 抗室外强光;
- 稳定性高;报错少
- 工业级防护
- 输出接口丰富
- 质量达到或超越国外同类型产品

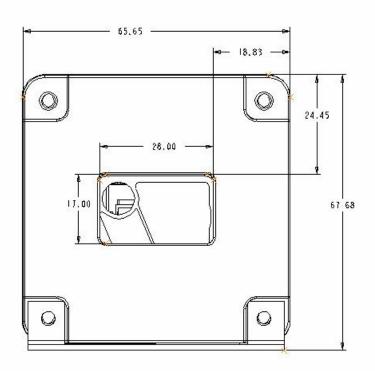
目录

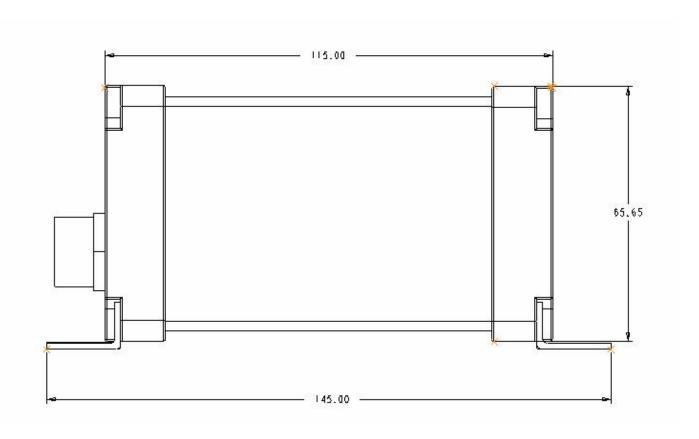
1,	性能参数	5
2,	数据接口	5
3,	外形尺寸	6
4、	通讯协议介绍	
	4.1 通信物理参数	
	4.2 协议格式	
	4.3 CRC 校验 C 语言实现	
	4.4 RS485modbus-RTU 寄存器说明	
	4.4.1 基础功能寄存器	
	4.4.2 扩展功能寄存器	
	4.4.3 错误代码和解决方案	
	4.5 寄存器使用细节和示例	
	4.5.1 读取错误状态	
	4.5.2 读取测量状态	
	4.5.3 设置测量状态	
	4.5.4 读取测量距离值	
	4.5.5 读取设备地址	
	4.5.6 读取中口通讯参数	
	4.5.8 读取整体偏移量	
	4.5.9 设置整体偏移量4.5.9 设置整体偏移量	
	4.5.10 读取软件版本号	
	4.4.11 读取测量频率	
	4.5.12 设置测量频率	
	4.5.13 读取设备温度	
	4.5.14 读取设备序列号	
	4.5.15 读取 DAC 输出模式	
	4.5.16 设置 DAC 输出模式	
	4.5.17 读取 DAC 输出最小量程	
	4.5.18 设置 DAC 输出最小量程	
	4.5.19 读取 DAC 输出最大量程	. 16
	4.5.20 设置 DAC 输出最大量程	. 16
	4.5.21 读取开关量输出 1 高电平距离值	. 18
	4.5.22 设置开关量输出 1 高电平距离值	. 18
	4.5.23 读取开关量输出 1 低电平距离值	. 18
	4.5.24 设置开关量输出 1 低电平距离值	
	4.5.25 读取开关量输出 2 高电平距离值	
	4.5.26 设置开关量输出 2 高电平距离值	
	4.5.27 读取开关量输出 2 低电平距离值	
	4.5.28 设置开关量输出 2 低电平距离值	
	4.5.29 读取 CAN 通讯帧模式	
	4.5.30 设置 CAN 通讯帧模式	
	4.5.31 读取 CAN 通讯波特率	
	4.5.32 设置 CAN 通讯波特率	
	4.5.33 读取 CAN 通讯发送 ID	
	4.5.34 设置 CAN 通讯发送 ID	
	4.5.35 读取 CAN 通讯接收 ID	
	4.5.36 设置 CAN 通讯接收 ID	
	4.5.37 保存参数数据	
	4.5.38 读取多个测量结果数据	
	4.5.38 使用 modScan32 测试 modbus	
	M.1 中日以且	∠∠

SK-PRO	系列激光	测距传感器

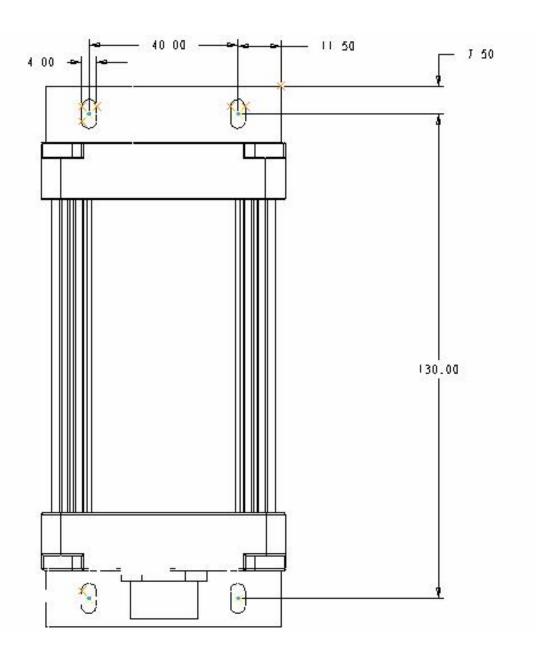
A.1 寄存器参数设置	22
5. CAN 通信	
5.1 CAN 通信参数说明	
5.2 CAN2.0B 标准数据帧格式	
5.3 CAN2.0B 扩展数据帧格式	
附件 1: 航插线缆图纸	
附件 2: 航插座规格	
联系我们 Contact us	

1、性能参数


#11 日.	CIZ D 20	CIV D (O	CIZ D 100
型号	SK-Pro30	SK-Pro60	SK-Pro100
测量范围	0.05~30m	0.05~60m	0.05~100m
分辨率		0.1mm	
重复精度		0.5mm	
准确度		1mm	
测量速率		30Hz(可调 ⁻	节)
响应时间		Min 0.033	S
测量目标物体	静态或动	态目标的自然表	面或专用反射板
环境光影响		抗室外阳光 10	OkLux
光源	波长	650~660nm 红	色可见激光
激光等级	1 (IEC 6	50825-1:2014, El	N 60825-1:2014)
典型光点直径		Ф2mm (10m	处)
激光寿命		100000h 以	上
供电		DC7~28V	7
功耗		<2W	
外壳材质		铝合金	
镜片材质		PMMA	
外形尺寸		116×65.65×65.6	5mm
防护等级	IP65		
重量	560g		
工作温度	-20~+60°C		
安装		配装支架 4	*M3


2、数据接口

数字接口	RS485	带隔离; 地址位区分; 最多支持 255 台并联		
数于按口	CANBUS			
	4-20mA			
	0-20mA	电流环对应量程可自由设置;		
模拟接口	0-24mA			
	0-5V	电压对应量程可自由设置;		
	0-10V	电压剂应里柱引日田区直;		
开关量接口	开关量	1 路、2 路开关量; 阈值可自由设置		
线缆		带屏蔽 8 芯 1m 长		



3、外形尺寸

图三: 底端

4、通讯协议介绍

4.1 通信物理参数

- 波特率: (默认) 115200,可使用的常见波特率有: 2400,4800,9600,14400, 19200,38400,57600,76800,115200;其它波特率可通过设置波特率设置后自行标记记录。
- 奇偶校验:无校验
- 停止位: 1 位
- 数据位:8位

4.2 协议格式

采用 MODBUS.RTU 方式, CRC16 位校验。

注: 数字后面加 H 表示十六进制数据格式,比如 03H,表示十六进制的 03。

(1)功能码03H--查询从设备寄存器内容

表1 主设备报文格式

从设备地址	功能码	起始寄存器 地址	寄存器个数 (以 2 个 字节计算)	CRC 校 验
1 字节	(03H)1字 节	2 字节	n 字节	2 字节

表2 从设备报文格式

从设备地址	功能码	数据区字节 数	数据区	CRC 校 验
1 字节	(03H)1字 节	1 字节	n*2 字节	2 字节

(2)功能码 06H--设置从设备单个寄存器内容

表3 主设备报文格式

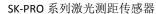

从设备地址	功能码	寄存器地址	写入的数据	CRC 校 验
1 字节	(06H)1字 节	2 字节	2 字节	2 字节

表4 从设备报文格式

从设备地址	功能码	寄存器地址	写入的数据	CRC 校 验
1 字节	(06H)1字 节	2 字节	2 字节	2 字节

说明:

- ▶ 整包数据必须连续发送,两个数据包必须间隔 3.5 个字符的静止时间再发送,否则都会解析出错。
- ▶ 如果使用 PLC 设备做主设备,则发送的读取寄存器个数以 2 字节为一个寄存器,所以发送的寄存器个数是字节长度的一半。
- ▶ 有效的从设备地址范围为 0-247 (十进制),其中设备地址 0 为广播地址,所有从机都可收到,1-247 为从机的寻址范围。
- ▶ 功能码的有效范围 1-255 (十进制),本协议使用的功能码有 03(读),06(写)。
- ▶ 地址和数据中包含的 16 位或者 32 位数据,则发送时高字节在前,低字节在后。
- ▶ CRC 校验数据是两个字节,低 8 位在前,高 8 位在后。该校验数据由设备地址、功能码和

数据通过 1.2.1 的 CRC 计算公式计算得出。接收设备重新计算收到消息的 CRC,并与接收到的 CRC 域中的值比较,如果两值不同,则有误。

4.3 CRC 校验 C 语言实现

```
//计算 CRC 校验值
        unsigned short CRC16 (unsigned char *arrbuff, int len)
         unsigned short crc = 0xFFFF;
         int i, j;
         for (j=0; j<1en; j++)
          crc=(unsigned short)(crc ^arrbuff[j]);
          for (i=0; i<8; i++)
          {
              if ((crc \& 1) > 0)
                 crc = (unsigned short)(crc >> 1);
                 crc = (unsigned short) (crc ^ 0xa001);
             }
             else
              {
                 crc = (unsigned short)(crc >> 1);
        return (crc);
```


4.4 RS485modbus-RTU 寄存器说明

4.4.1 基础功能寄存器

表 5 基础功能寄存器定义表

寄存器地址	寄存器内容	寄存器 个数	寄存器 状态	说明
0000Н	错误状态码	2	只读	=0 无故障 >0 有故障,具体错误代码请看表 6
0001H	运行状态	2	读写	0 空闲,停止测量1 激光指示2 正在测量
0002Н	测量距离值	4	只读	4 字节无符号整型数据,高位在前,低 位在后,单位 0.1mm,0 为无效数据
0003H	设备地址	2	读写	有效范围 1-247
0004Н	串口通讯参数	4	读写	高 8 位为校验参数: 00 无校验 01 奇校验 02 偶校验 低 24 位为波特率: 有效范围 2400-115200
0005H	距离偏移量	2	读写	有符号整数,单位 0.1mm
0006Н	软件版本号	2	只读	当前软件版本号
0007Н	测量频率设置	2	读写	=0 单次 =1 5Hz =2 10Hz =3 20Hz =4 30Hz
0008H	设备温度	2	只读	单位 0.1℃
0009Н	序列号	4	只读	唯一序列号

4.4.2 扩展功能寄存器

表 6 扩展功能寄存器定义表

寄存器地	寄存器内容	寄存器字	寄存器	说明	
址		节长度	状态		
000AH	DAC 输出模	2	读写	模拟量输出功能	
	式			=0 关闭	
				=1 0-5V	
				=2 0-10V	
				=3 4-20mA	
				=4 0-20mA	
				=5 0-24mA	
000BH	DAC 输出最	4	读写	有效数据范围 0-900000	
	小量程				
000CH	DAC 输出最	4	读写	有效数据范围 0-900000	
	大量程				

森库莱萨 (深圳)智能科技有限公司

http://sklszg.com/

				SK-PRU 系列 成儿侧距1
000DH	开关量输出	4	读写	有效数据范围 0-900000
	1高电平距			
	离值			
000EH	开关量输出	4	读写	有效数据范围 0-900000
	1低电平距			
	离值			
000FH	开关量输出	4	读写	有效数据范围 0-900000
	2高电平距			
	离值			
0010H	开关量输出	4	读写	有效数据范围 0-900000
	2 低电平距			
	离值			
0011H	开关量入功	2	读写	=0 关闭
	能			=1 悬空或高电平启动测量,低电平停
				止测量
				=2 悬空或高电平停止测量,低电平启
				动测量
0014H	CAN 通讯帧	2	读写	=0 标准帧
	模式			=1 扩展帧
0015H	CAN 通讯波	2	读写	单位 KHz,有效数据为:
	特率			20,50,80,100,125,250,500,600,800,1000
00016H	CAN 通讯发	4	读写	标准帧模式, ID 有效范围为 0-7FF,H 扩
	送 ID			展帧模式 ID 有效范围为 0-1FFFFFFH
0017H	CAN 通讯接	4	读写	标准帧模式, ID 有效范围为 0-7FF,H 扩
	收 ID			展帧模式 ID 有效范围为 0-1FFFFFFH
0018H	保存参数	2	写	把设定的参数存入存储器,掉电保存
0019H	获取多个测	12	读	获取测量的距离、信号强度和内部温
	量结果参数			度值。三个参数都是4个字节长度表
				示的整数。
0028H	读取最大量	4	读	获取设备最远测量距离
	程			
0029H	读取最小量	4	读	获取设备最近测量距离
	程			
	1	1	1	l .

4.4.3 错误代码和解决方案

表 6 错误代码定义表

错误代码	含义
220	内部通信故障
252	温度过高(60℃)
253	温度过低(-10℃)
254	目标测距值超出量程范围
255	目标反射信号弱或者超量程
256	目标反射信号过强
257	环境光过强

4.5 寄存器使用细节和示例

设备为测距传感器,主机为控制接收端。以下以设备地址=19H(十进制为25)作为示例,设备发送即主机接收的数据。

4.5.1 读取错误状态

方向	数据	含义
主机->设备	19 03 00 00 00 01 87 D2	读取错误状态
设备->主机	19 03 02 00 00 98 46	无错误
	19 03 02 00 FF D8 06	错误代码 255

4.5.2 读取测量状态

方向	数据	含义
主机->设备	19 03 00 01 00 01 D6 12	读取测量状态
设备->主机	19 03 02 00 00 98 46	激光关闭,停止测量
	19 03 02 00 01 59 86	激光开启,指示模式
	19 03 02 00 02 19 87	正在测量

4.5.3 设置测量状态

方向	数据	含义
	19 06 00 01 00 02 5A 13	启动测量
主机->设备	19 06 00 01 00 01 1A 12	打开激光
	19 06 00 01 00 00 DB D2	停止测量
	19 06 00 01 00 02 5A 13	已启动测量
设备->主机	19 06 00 01 00 01 1A 12	己打开激光
	19 06 00 01 00 00 DB D2	已停止测量

4.5.4 读取测量距离值

方向	数据	含义
主机->设备	19 03 00 02 00 02 66 13	读取测量距离
	19 03 04 00 00 3D 9B 33 09	单位 0.1mmm.
设备->主机		测量结果 00003D9BH,换算
以田・ノエル		成 10 进制结果为 1.5771m
	19 03 04 00 00 00 00 62 32	测量结果为0,距离无效

4.5.5 读取设备地址

方向	数据	含义
	19 03 00 03 00 01 77 D2	读取设备地址
主机->设备	或	如果不知道设备地址可以使
	00 03 00 03 00 01 75 DB	用广播地址 0
设备->主机	19 03 02 00 19 59 8C	地址为 0019H

4.5.6 读取串口通讯参数


方向	数据	含义
主机->设备	19 03 00 04 00 01 C6 13	读取串口通讯参数
设备->主机	19 03 04 00 01 C2 00 62 92	00H:无校验
		01C200H:波特率 115200

4.5.7 设置通讯参数

方向	数据	含义
主机->设备	19 06 00 04 01 00 E1 00 5F 01	01H:奇校验
±10. %H	19 00 00 01 01 00 E1 00 E1 01	00E100H:波特率 57600
设备->主机	19 06 00 04 01 00 E1 00 5F 01	01H:奇校验
		00E100H:波特率 57600

使用说明:使用修改波特率时,必须知道当前波特率,否则指令不会被设备正确识别。如果不知道具体波特率,可把串口接收调试工具调为默认参数115200,无校验,首次上电会通过串口输出当前设置的串口通讯参数和设备 ID,如下图所示:

4.5.8 读取整体偏移量

方向	数据	含义
主机->设备	19 03 00 05 00 01 97 D3	读取设备整体偏移量
设备->主机	19 03 02 FF 03 99 B7	偏移量单位为 0.1mm 返回的数据 FF03H,十进制 为-253,

4.5.9 设置整体偏移量

方向	数据	含义
主机->设备	19 06 00 05 FE FC DA 32	整体偏移量单位 0.1mm 设置整体偏移量为 FFFC,十 进制为-260,有效的范围为
		[- 20000~ 20000]
		整体偏移量单位 0.1mm
设备->主机	19 06 00 05 FE FC DA 32	设置整体偏移量为 FFFC,十
		进制为-260

备注:偏移量为有符号整数,负数表示实测值比真实值大,需要减去的数值。 比如-260 的意思就是输出值=实测值-260。

4.5.10 读取软件版本号

方向	数据	含义
主机->设备	19 03 00 06 00 01 67 D3	读取软件版本号
设备->主机	10.02.02.00.66.19.60	版本号为 0066H,十进制表示
以奋一/土// [19 03 02 00 66 18 6C	是 102

4.4.11 读取测量频率

方向	数据	含义
主机->设备	19 03 00 07 00 01 36 13	读取测量频率
设备->主机	19 03 02 00 00 98 46	单次
	19 03 02 00 01 59 86	5Hz
	19 03 02 00 02 19 87	10Hz
	19 03 02 00 03 D8 47	20Hz
	19 03 02 00 04 99 85	30Hz

4.5.12 设置测量频率

方向	数据	含义
主机->设备	19 06 00 07 00 02 BA 12	设置频率参数为 0002H, 表示 10Hz
设备->主机	19 06 00 07 00 02 BA 12	频率参数为 0002H ,表示 10Hz

4.5.13 读取设备温度

方向	数据	含义
主机->设备	19 03 00 08 00 01 06 10	读取设备温度
设备->主机	19 03 02 00 CA 18 11	设备内部温度单位为 0.1℃, 数值为 00CAH,表示 20.2℃

4.5.14 读取设备序列号

方向	数据	含义
主机->设备	19 03 00 09 00 02 17 D1	读取序列号,2个寄存器长
		度
设备->主机	19 03 04 00 00 04 51 A1 0E	序列号为 00000451H,十进制
		为 1105

4.5.15 读取 DAC 输出模式

方向	数据	含义
主机->设备	19 03 00 0A 00 01 A7 D0	读取 DAC 输出模式
设备->主机	19 03 02 00 03 D8 47	模式参数为 0003H, 4-20mA 输出, 该参数为出厂默认值

模拟量输出模式参数含义如下,只能选择下面的参数,其它参数无效

- =0 关闭
- =1 0-5 V
- =20-10V
- =34-20mA
- =40-20mA
- =50-24mA

4.5.16 设置 DAC 输出模式

方向	数据	含义
主机->设备	19 06 00 0A 00 03 EA 11	设置 DAC 输 出 模 式 为 0003H,即 4-20mA 输出
设备->主机	19 06 00 0A 00 03 EA 11	频率参数为 0002H ,表示 10Hz

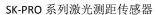
4.5.17 读取 DAC 输出最小量程

方向	数据	含义
主机->设备	19 03 00 0B 00 02 B6 11	读取 DAC 输出模拟量最小值
设备->主机	19 03 04 00 00 01 F4 62 25	模式参数为 DAC 输出模拟量
		最小值为 000001F4H,即 500

注释: 最小量程范围为 0-900000。

4.5.18 设置 DAC 输出最小量程

方向	数据	含义
主机->设备	19 06 00 0B 00 00 01 F4 42 BB	设置 DAC 输出模拟量最小 值 为 000001F4H,即 500
设备->主机	19 06 00 0B 00 00 01 F4 42 BB	


4.5.19 读取 DAC 输出最大量程

方向	数据	含义
主机->设备	19 03 00 0C 00 02 07 D0	读取 DAC 输出模拟量最大值
设备->主机	19 03 04 00 09 EB 10 FD 0C	模式参数为 DAC 输出模拟量
		最小值为 0009EB10H, 即
		650000

注释: 最大量程范围为 500-900000。

4.5.20 设置 DAC 输出最大量程

方向	数据	含义
主机->设备	19 06 00 0C 00 09 EB 10 68 52	设置 DAC 输出模拟量最大 值 为 0009EB10H,即 650000

设备->主机 19 06 00 0C 00 09 EB 10 68 52

说明: 本设备的 DAC 输出为 16 位精度, DAC 输出的分辨率为: (Dmax-Dmin)/65535DAC。

输出数据以最小量程为下限,以最大量程为上限,量程范围内为线性关系。比如,4-20mA 输出模式,假如测量距离为 d,则 DAC 输出数据为:

Iout = $\frac{-}{-} * 16 + 4$

4.5.21 读取开关量输出 1 高电平距离值

方向	数据	含义
主机->设备	19 03 00 0D 00 02 56 10	读取开关量输出1高电平距
		离值
设备->主机	19 03 04 00 00 03 E8 62 8C	参数为 000003E8H,即 1000

4.5.22 设置开关量输出 1 高电平距离值

方向	数据	含义
主机->设备	19 06 00 0D 00 00 03 E8 CA	设置开关量输出 1 高电平距
土切一人区田	12	离值 000003E8H, 即 1000
ᄺᄼᆠᄳ	19 06 00 0D 00 00 03 E8 CA	
设备->主机	12	

4.5.23 读取开关量输出 1 低电平距离值

方向	数据	含义
主机->设备	19 03 00 0E 00 02 A6 10	读取开关量输出1低电平距
		离值
设备->主机	19 03 04 00 00 01 F4 62 25	参数为 000007D0H,即 2000

4.5.24 设置开关量输出 1 低电平距离值

方向	数据	含义
主机->设备	19 06 00 0E 00 00 07 D0 8D	设置开关量输出 1 低电平距
土/ル-2以金	00	离值 000007D0H, 即 2000
设备->主机	19 06 00 0E 00 00 07 D0 8D	
以由一生机	00	

4.5.25 读取开关量输出 2 高电平距离值

方向	数据	含义
主机->设备	19 03 00 0F 00 02 F7 D0	读取开关量输出 2 高电平距
		离值
设备->主机	19 03 04 00 00 07 D0 61 9E	参数为 000007D0H,即 2000

4.5.26 设置开关量输出 2 高电平距离值

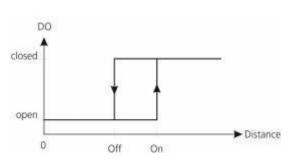
方向 数据	含义
---------	----

主机->设备	19 06 00 0F 00 00 07 D0 B0	设置开关量输出 2 高电平距
	CO	离值 000003E8H,即 1000
设备->主机	19 06 00 0F 00 00 07 D0 B0	
	CO	

4.5.27 读取开关量输出 2 低电平距离值

方向	数据	含义
主机->设备	19 03 00 10 00 02 C6 16	读取开关量输出2低电平距
		离值
设备->主机	19 03 04 00 00 03 E8 62 8C	参数为 000003E8H,即 1000

注释: 最小量程范围为 0-900000。


4.5.28 设置开关量输出 2 低电平距离值

方向	数据	含义
主机->设备	19 06 00 10 00 00 03 E8 26 10	设置开关量输出 2 低电平距 离值 000003E8H, 即 1000
设备->主机	19 06 00 10 00 00 03 E8 26 10	

开关量参数说明:

可以为设备 2 路开关量输出单独设置参数,配置参数有两种情况,即(1:ON > OFF, 2: ON < OFF)。设备根据设定的开关数值参数,自动判断属于哪种模式。

1) 迟滞参数: ON 电平>OFF 电平

随着距离的增加,当距离超过

ON 时打开数字输出高电平。随着距离的减小,当距离下降时,开关关闭输出低水平。

2) 迟滞参数: ON 电平<OFF 电平

4.5.29 读取 CAN 通讯帧模式

方向	数据	含义
主机->设备	19 03 00 14 00 01 C7 D6	读取 CAN 通讯帧模式
设备->主机	19 03 02 00 00 98 46	参数 0000H 普通帧
	19 03 02 00 01 59 86	参数 0001H 普通帧

4.5.30 设置 CAN 通讯帧模式

方向	数据	含义
主机->设备	19 06 00 14 00 01 0B D6	设置 CAN 通讯帧模式为扩 展
		帧
设备->主机	19 06 00 14 00 01 0B D6	参数 0001H 普通帧

4.5.31 读取 CAN 通讯波特率

方向	数据	含义
主机->设备	19 03 00 15 00 01 96 16	读取 CAN 通讯帧波特率
设备->主机	19 03 02 00 7D 58 67	参数 007DH,单位为 K,十
		进制含义为 125K

4.5.32 设置 CAN 通讯波特率

方向	数据	含义
主机->设备	19 06 00 15 00 FA 1B 95	设置 CAN 通讯帧波特率为 00FAH,单位 K,即 250K
设备->主机	19 06 00 15 00 FA 1B 95	

CAN 通讯波特率仅限于以下几种: 20,50,80,100,125,250,500,600,800,1000,单 位. K。

4.5.33 读取 CAN 通讯发送 ID

方向	数据	含义
主机->设备	19 03 00 16 00 02 26 17	读取 CAN 通讯接收 ID
设备->主机	19 03 04 00 00 02 86 E2 F0	参数 00000286H,十进制为
		646

发送 ID 的有效范围和帧模 式有关。普通帧, 取值范围

为: 0-7FF

扩展帧,取值范围为: 0-1FFF FFFF

4.5.34 设置 CAN 通讯发送 ID

方向	数据	含义
----	----	----

主机->设备	19 06 00 16 00 00 02 86 2E 6C	设置通讯发送 ID 为 00000286H, 十进制为 646
设备->主机	19 06 00 16 00 00 02 86 2E 6C	

发送 ID 的有效范围和帧模式有关。

普通帧,取值范围为: 0-7FF

扩展帧,取值范围为: 0-1FFF FFFF

4.5.35 读取 CAN 通讯接收 ID

方向	数据	含义
主机->设备	19 03 00 17 00 02 77 D7	读取 CAN 通讯接收 ID
设备->主机	19 03 04 00 00 03 06 E2 C0	参数 00000306H,十进制为
		774

发送 ID 的有效范围和帧模 式有关。普通帧, 取值范围 为: 0-7FF 扩展帧,取值范围为: 0-1FFF FFFF

4.5.36 设置 CAN 通讯接收 ID

方向	数据	含义
主机->设备	19 06 00 17 00 00 03 06 13 9C	设置通讯发送 ID 为 00000306H,十进制为 774
设备->主机	19 06 00 17 00 00 03 06 13 9C	

发送 ID 的有效范围和帧模式有关。

普通帧,取值范围为: 0-7FF

扩展帧,取值范围为: 0-1FFF FFFF

注: CAN 通讯协议详见《工业测距传感器 CAN 通讯协议》

4.5.37 保存参数数据

方向	数据	含义
主机->设备	19 06 00 18 00 01 CB D5	保存参数到内部存储器,掉
		电保存
设备->主机	19 06 00 18 00 01 CB D5	保存成功

只有使用该命令后,设置的参数才会掉电保存,否则重新上电需要重新配置。

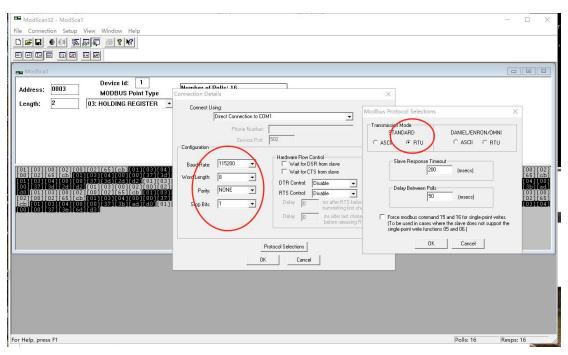
4.5.38 读取多个测量结果数据

方向	数据	含义
主机->设备	19 03 00 19 00 06 17 D7	读取距离,信号强度和温度
设备->主机	19 03 0C 00 00 3C FA 00 00	00 00 3C FA 为距离值 15610

AB 1A 00 00 01 04 71 54

00 00 AB 1A 为强度值 43802 00 00 01 04 为温度值 260

该命令用于同时获取多个测量参数,距离值单位 0.1mm,强度值单位 uV,温度值单位 0.1 $^{\circ}$


4.5.38 使用 modScan32 测试 modbus

A.1 串口设置

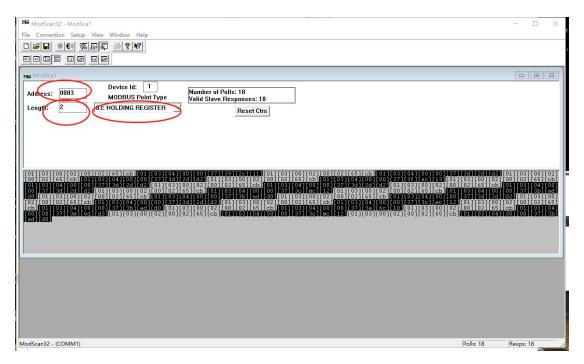
电脑端串口1和传感器相连。

通信参数: 115200,8位数据长度,1停止位,无校验

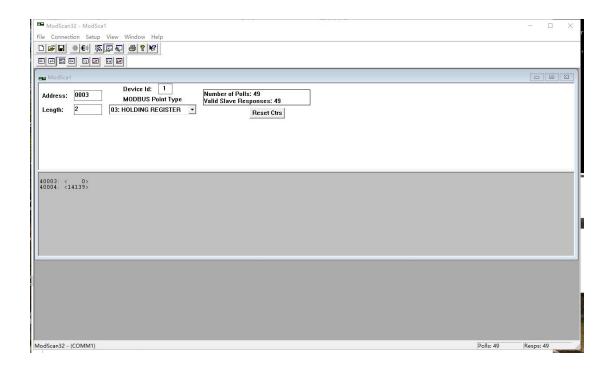
通信模式: RTU

A.1 寄存器参数设置

Device id: 设备的从地址


Address: 寄存器地址, modscan 会自动把寄存器地址减 1 后再发送, 所以读取距离参数寄存器 2 时, 需要填写 Address 为 3。

Length: 寄存器长度,数据为传感器发回数据自己长度/2.


选用 03,HOLDING REGESTER。读取距离数据

菜单: setup->display Options->show traffic 显示如下数据

菜单: setup->display Options->show Data 显示如下数据,该界面为自动解析的结果,14139 为距离值。

5. CAN 通信

5.1 CAN 通信参数说明

- CAN 通信的参数需通过 RS485 总线设置。设置方法具体可参考 RS485 通信协议文档。
- 波特率最高支持 1M, 推荐使用 125K, 250K, 500K, 波特率可通过参数设置, 支持的波特率包括 20K, 50K, 80K, 100K, 125K, 250K, 500K, 600K, 800K, 1000K。
- 支持 CAN2. 0B 标准帧和扩展帧两种格式,可以通过参数设置。
- 发送 ID 和接收 ID 也可以通过参数设置。
- 标准数据帧和扩展数据帧的区别只在 ID 的表示范围上,其它部分完全一样。默认为标准帧,波特率 125K,发送 ID 为 646,接收 ID 为 774。

5.2 CAN2.0B 标准数据帧格式

标准帧信息位 11 字节长度,包括信息和数据两部分,前三个字节为信息部分。

ID(Identifier):数据帧的标识符,长度为11位,总线上每个节点的ID为唯一不重复的。

RTR(Remote Transmission Request Bit): 远程传输请求位,它是用于区分数据帧和遥控帧的,

当它为显性电平时表示数据帧, 隐性电平时表示遥控帧。

DLC(Data Length Code): 数据长度码,有四个数据位组成,表示该报文中有多少字节,数据范围为 0-~8。

传感器发出的 CAN 协议包格式如下:

ID	RTR	DLC	Data								
(发送)			D0	D1	D2	D3	D4	D5	D6	D7	
0x000-0x7FF	0	8	xx	00	уу	уу	MM	MM	MM	MM	
							(LSB)			(MSB)	

XX = Status byte (02 测量完成 01 启动测量, 00 激光关闭)

yyyy = Error byte (错误标志)

MM =距离值,单位 0.1mm,采用小端模式 (二进制数据)

示例:

比如距离 1458.8mm, 使用 CAN 发出的格式如下:

ID = 0x000-0x7FF RTR = 0 DLC = 8 DATA = 02 00 00 00 FC 38 00 00 (十六进制模式).

传感器接收的数据包

ID	RTR	DLC	Data							
(接收)			D0	D1	D2	D3	D4	D5	D6	D7
0x000-0x7FF	0	1	XX	YY	00	00	00	00	00	00

XX = 01: 打开激光启动测量 (上电后默认是开启状态)

XX = 00: 关闭激光停止测量

YY = 00: 单次测量 YY = 01: 测量频率 5Hz YY = 02: 测量频率 10Hz

YY = 03: 测量频率 20Hz YY = 04: 测量频率 30Hz

00 预留备用

5.3 CAN2.0B 扩展数据帧格式

标准帧信息位 13 字节长度,包括信息和数据两部分,前五个字节为信息部分。

ID(Identifier):数据帧的标识符,长度为29位,总线上每个节点的ID为唯一不重复的。

RTR(Remote Transmission Request Bit): 远程传输请求位,它是用于区分数据帧和遥控帧的,当它为显性电平时表示数据帧,隐性电平时表示遥控帧。

DLC(Data Length Code):数据长度码,有四个数据位组成,表示该报文中有多少字节,数据范围为 0-~8。

传感器发出的 CAN 协议包格式如下:

ID	RTR	DLC	Data								
(发送)			D0	D1	D2	D3	D4	D5	D6	D7	
0x0000000-0x1FFFFFF	0	8	xx	00	00	00	MM	ММ	MM	MM	
							(LSB)			(MSB)	

XX = Status byte (02 测量完成 01 启动测量, 00 激光关闭)

yyyy = Error byte (错误标志)

MM = 距离值,单位 0.1 mm,采用小端模式 (二进制数据)

示例:

比如距离 1458.8mm, 使用 CAN 发出的格式如下:

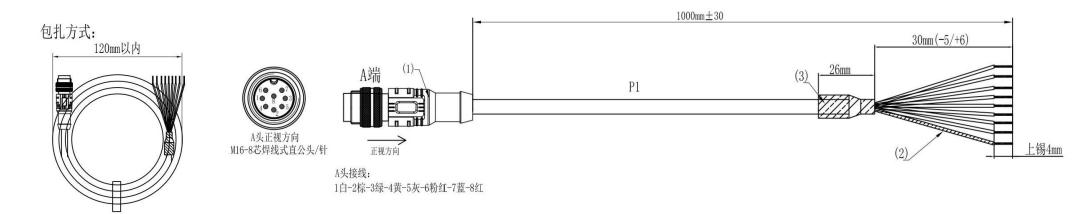
ID = 0x000-0x7FF RTR = 0 DLC = 8 DATA = 02 00 00 00 FC 38 00 00 (十六进制模式).

传感器接收的数据包

ID	RTR	DLC		Data						
(接收)			D0	D1	D2	D3	D4	D5	D6	D7
0x0000000-0x1FFFFFF	0	1	XX	YY	00	00	00	00	00	00

XX = 01: Switch on laser (state after Power-On),打开激光启动测量

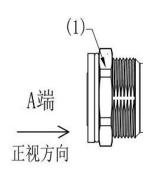
XX = 00: Switch off laser 关闭激光,停止测量


YY = 00: 单次测量

YY = 01: 测量频率 5Hz YY = 02: 测量频率 10Hz YY = 03: 测量频率 20Hz YY = 04: 测量频率 30Hz

00 预留备用

附件1: 航插线缆规格


	裁线表	長/端 头 描 述		
序号	线 材 规 格/颜 色	裁线长度	用量	
P1	(8*0. 25+1D1. 17) 1白-2棕-3绿-4黄-5灰-6粉红-7蓝 -8红+AL+编织TS 0D6. 5 雾面黑被			
	胶 壳 / 端 子	备 注		
		M16 焊线式公针	8PCS	
		M16 常规公胶芯	1PCS	
(1)	M16-8芯焊线式直公头/针	M16 成型式连接螺钉	1PCS	
(1)	M10-0心杆线八旦公天/打	M16 成型式公头屏蔽外壳	1PCS	
l	胶 料	内模PE+外模黑色环保PVC		
(2)	黑色热缩管 ø 1.0*43mm		1PCS	
(3)	黑色热缩管 ø 8. 0*26mm		1PCS	

	芯数	2	3	4	4 5 5A 6		7	7A	8	12	14	14A	16	19	24	
	额定电流/电压	7A,	/250V	6A/250V				5A/125V			3A/60V					1A/60V
技	额定脉冲电压	15	V000		1500V				800V		500V					500V
术	绝缘电阻(MΩ)	≥'	100		≥1	00		≥100					≥100			≥100
参数	接触电阻(mΩ)	≤ 5														
	防护等级							IP	67							
	温度范围						-2	25°C	~ +80	o.c						
	插拔周期							≥	500							
	接线方式	焊线														

附件 2: 航插座规格

A头接线:

1白-2棕-3绿-4黄-5灰-6粉红-7蓝-8红

	裁线	表/端 头 描 述		
序号	线 材 规 格/颜 色	裁线长度	用量	
P1	8*0.25mm2 1白-2棕-3绿-4 黄-5灰-6粉红-7蓝-8红 雾面黑被			
	胶壳/端子	备 注		
		M16 焊线式母针	8PCS	
		M16 常规母胶芯	1PCS	
(1)	M16-8芯焊线式板前母座	M16 板前安装插座母头外壳	1PCS	
(1)	,	M18×0.75 六角螺母	1PCS	
		胶芯防水0型圈 ∅12×∅9×1.5	1PCS	
		売体防水0型圏 ∅17×∅14×1.5	1PCS	
	密封胶A+B混合物			
(2)	PH母端子	镀锡	8PCS	
(3)	黑色热缩管 ø 1.0*18mm		8PCS	

	芯数	2	3	4	5	5A	6	7	7A	8	12	14	14A	16	19	24
技术参数	额定电流/电压	7A/250V		6A/250V				5A/125V			3A/60V					1A/60V
	额定脉冲电压	1500V		1500V				800V			500V					500V
	绝缘电阻(MΩ)	≥100		≥100				≥100			≥100					≥100
	接触电阻(m Ω)	≤ 5														
	防护等级	IP67														
	温度范围	−25°C ~ +80°C														
	插拔周期	≥500														
	接线方式							焊	线							

联系我们 Contact us

森库莱萨 (深圳)智能科技有限公司

电话 TEL:

手机 MP: 15814777168

传真 Tax:

网址 Web: http://sklszg.com/

售后邮箱 Emai:

销售邮箱 Emai:

地址:

邮编 Postcode: