SK60 激光测距模块 用户手册 Product Manuals

Version 2.0 CN&EN

森库莱萨(深圳)智能科技有限公司

森库莱萨

目录

— ,	产品概述 Product overview	3
_,	性能指标 Technical Parameter	4
三、	机械尺寸 Size	5
四、	引脚定义 Pin definition	6
五、	通信协议与传输方式 Communication Protocol and Output Format	8
:	5.1 端口配置 USART Interface	8
:	5.2 控制流字符 Control flow char	8
;	5.3 命令格式框架 Command Frame	9
:	5.4 命令 Commands	9
:	5.5 测量模式 Measure Modes	14
:	5.6 状态码 Status Codes	14
六、	操作指导 Operation instruction	15
七、	联系我们 Contact us	18

一、产品概述 Product overview

森库莱萨(深圳)智能科技有限公司一直致力于激光领域的研发,开发出的激光测距传感器集光学、电子、机械等技术为一体,可以快速而准确的获取距离值。

SK60 激光测距模块采用相位法,通过激光的发射和接收非接触式检测到目标物体之间的距离。

SK60 激光测距模块是为快速、精准地测量距离而开发出的。即使在恶劣的环境中,依然可以表现出优异的性能。

特性:

小尺寸: 50*26*13mm

重量轻: 9g

精确:正负 2 毫米 最远量程: 60 米

室外阳光下配合反光板可测: 35米

性价比高 功耗低

支持二次开发

易集成

本手册要求用户具有基本的计算机技能,了解 Windows 图形的用户界面 (GUI) 手册文档中会使用以下符号突出所要显示的信息。

⚠警告标志表明可能产生负面影响或损害设备的行为。

食指表明有关设备的操作和性能的重要信息。

注意!不要使用眼睛直视测距仪镜筒,有可能会导致眼睛损伤.

文档中 存在不清楚的地方,请联系对应销售,或者联系邮箱 sales@shsenky.com.

二、 性能指标 Technical Parameter

准确度 ¹⁾ accuracy	±2mm
分辨率 resolution	1mm
室内测量范围 2) (自然目标,90%反射率)	60m
户外测量范围 ³⁾ (需配合专用反光板)	35m
盲区 blind area	3cm
频率 frequency	Max 3Hz
测量时间 ⁴⁾ Measuring Time	>0.3s
激光安全等级 Laser Class	Class II
激光类型 Laser Type	635nm, <1mW
尺寸 Size	50*26*13mm
重量 Weight	9g
电压 Voltage	DC 2.5~3.3V
操作温度 Operating Temperature	-40-60°C

- 1) 全量程范围内,和标准距离差在±2mm 范围; 会受目标平整度颜色等影响;
- 2) 白色目标效果最佳,室内可测 60m 以上;
- 3) 户外需要配专用反光板测量效果最佳;
- 4) 测量频率 3Hz, 每秒最高可测量 3次, 获取 3个距离数据包;

三、机械尺寸 Size

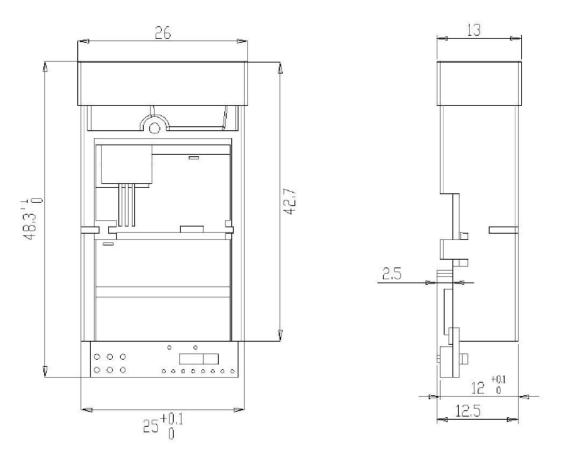
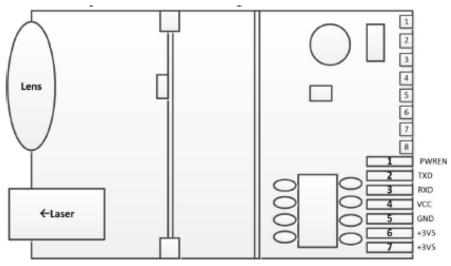



Figure 3-1 Mechanical Size

四、引脚定义 Pin definition

需要4个最多5个引脚,就可以为激光测距模块供电和控制信号。

图 4-1 引脚定义图

Module Bottom View

引脚 Pin	名称	功能	默认值	描述
1	PWREN	信号输入	低 Low	模块通电控制引脚 ,高电平有效
2	TXD	信号输出	高 High	模块串口发送引脚, 开漏 open-drain
3	RXD	信号输入	高 High	模块串口接收引脚, 开漏 open-drain
4	VCC	电源+	电源	DC 2.5V~3.3V 300mA+
5	GND	电源-	地	模块电源地

终端应用可能需要连接多台激光测距模块同时工作读取距离值。在多从系统中,每个模块接入网络之前,请注意将每个模块设置成不同地址位以避免冲突。出厂前,每个模块默认地址位为0x00。

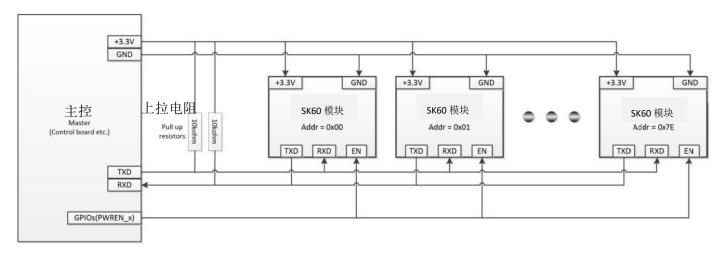


图 4-2 焊接实物图

图 4-2 显示, TTL-USB 模块 TXD/RXD 没有接上拉电阻,是因为 USB 转换器 TXD/RXD 引脚内部具有上拉电阻器; 绿线 PWREN 可以不接;

谨记: 模块 TXD/RXD 引脚为开漏型;

如果信号接单片机,请加上拉电阻。

(也有不需加上拉电阻版本的模块)

绝对最大额定参数 Absolute maximum ratings

注意:超过一个或多个极限值可能导致模块永久损坏!

类目	最小值 Min	典型值 Normal	最大值 Max	单位 Units
电压 VCC	-0.3	3.0	5.5	V
GND		0	0	V
TXD	-0.3		VCC+0.3	V
RXD	-0.3		VCC+0.3	V
PWREN	-0.3	VCC	4.0	V
工作温度	-40		+60	°C
存储温度	-40		+60	°C

五、通信协议与传输方式 Communication Protocol and Output Format

5.1 端口配置 USART Interface

波特率:19200bps; 起始位: 1 bit; 数据位: 8 bits; 停止位: 1 bit; 检验位: 无; 流控制: 无

5.2 控制流字符 Control flow char

所有通信命令都由主板发出,激光测距模块起辅助作用,回答主机的请求。USART 的问答流程如下图所示。

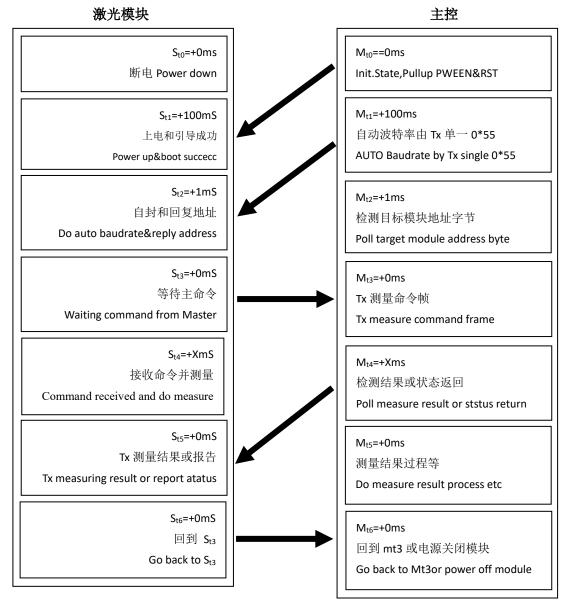


图 5-1 控制流程图

5.3 命令格式框架 Command Frame

命令框架由6个部分组成,如下表所示。

字节	0	1	1	2	3	4	5	6	7	8
Bits	[7:0]	[7]	[6:0]	[7:0]	[7:0]	[7:0]	[7:0]	[7:0]	[7:0]	[7:0]
名称	首	R/W	地址	寄存器		有效	计算	有效	字节	校验
举例	0xAA	0	0x51	0x00	0x20	0x00	0x01	0x00	0x00	0x72

上表举例了主机到从机的单次测量请求命令。在这个命令框架中:

- 首字节以固定头字节 0xAA 开始;报错时以 0xEE 开头;请参阅 5.4.16 从机应答错误;
- R/W 表示位, 0表示写入, 1表示读取;
- 0x51 是地址位,范围 0x00 到 0x7F(最多支持 127 个地址位); 0x00 是默认地址; 0x7F 是广播地址,在 一主多从网络中可以发这个地址实现同时工作;
- 第2和3字节是寄存器 (参见寄存器列表 5.3.1 了解更多);
- 尾字节是帧校验和,校验和=第1+2+3+4+5+6+7字节之和,字节溢出忽略;

5.3.1 控制寄存器 Control Registers

	<u> </u>		
序号	寄存器	命名	功能
1	0x0000	REG_ERR_CODE	系统状态代码
2	0x0006	REG_BAT_VLTG	工作电压
3	0x0010	REG_ADDRESS	模块地址
4	0x0012	REG_OFFSET	模块测量结果偏移
5	0x0020	REG_MEA_START	开始测量
6	0x0022	REG_MEA_RESULT	测量结果
7	0x01BE	REG_CTRL_LD	激光二极管的控制

5.4 命令 Commands

5.4.1 读取模块最新状态

字节	0	1	2 3		4
名称	首	地址	寄存器		校验
数据	0xAA	0x80	0x00	0x00	0x80

- 类型:读命令
- 从地址:0x00
- 寄存器地址:0x0000
- 功能:读取前一条命令执行后模块的状态;

从机回复:

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	寄存器	寄存器		有效计算		有效字节	
数据	0xAA	0x80	0x00	0x00	0x00	0x01	0xYY 0xZZ		sum

- Sum 是校验位,校验算法为前面所有字节除了首字节 AA 之外十六进制的和。
- 字节 0xZZ 是从机返回的状态码,具体见 5.5 状态码。

5.4.2 读取硬件版本号

字节	0	1	2 3		4
名称	首	地址	寄有	字器	校验
数据	0xAA	0x80	0x00	0x0A	0x8A

■ 类型:读命令

- 寄存器地址:0x000A
- 功能:读出模块的 HW 版本号;
- 从机回复:

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	寄存器		有效计算		有效	校验	
数据	0xAA	0x80	0x00	0x0A	0x00	0x01	0xVV	0xYY	sum

HW 版本号是 0xVVYY。

5.4.3 读取软件版本号

字节	0	1	2 3		4
名称	首	地址	寄存	字器	校验
数据	0xAA	0x80	0x00	0x0C	0x8C

- 类型:读命令
- 从地址:0x00
- 寄存器地址:0x000C
- 功能:读出模块的软件版本号;

从机回复:

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	寄存器		有效计算		有效	字节	校验
数据	0xAA	0x80	0x00	0x0C	0x00	0x01	0xVV	0xYY	sum

SW 版本号是 0xVVYY。

5.4.4 读取模块序列号

字节	0	1	2	3	4
名称	首	地址	寄存器		校验
数据	0xAA	0x80	0x00	0x0E	0x8E

- 类型:读命令
- 从地址:0x00
- 寄存器地址:0x000E
- 功能:读取模块的序列号;

从机回复:

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	寄存器		有效计算		有效字节		校验
数据	0xAA	0x80	0x00	0x0E	0x00	0x01	0xSS	0xNN	sum

HW 版本号是 0xSSNN。

5.4.5 读取输入电压

字节	0	1	2 3		4
名称	首	地址	寄存器		校验
数据	0xAA	0x80	0x00	0x06	0x86

- 类型:读命令
- 从地址:0x00
- 寄存器地址:0x0006
- 功能:读出模块输入电压(BCD编码);

从机回复:

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	寄存器		有效计算		有效字	校验	
数据	0xAA	0x80	0x00	0x06	0x00	0x01	0x32	0x19	sum

输入电压= 3219mV

5.4.6 读取测量结果

字节	0	1	2 3		4
名称	首	地址	寄存器		校验
数据	0xAA	0x80	0x00	0x22	0xA2

- 类型:读命令
- 从地址:0x00
- 寄存器地址:0x0022
- 功能:读出距离测量结果;

从机回复:

字节	0	1	2	3	4	5	6:9	10:11	12
名称	首	地址	寄石	字器	有效计算		有效距离值	信号质量	校验
数据	0xAA	0x00	0x00	0x22	0x00	0x03	0xAABBCCDD	0x0101	sum

5.4.7 设置模块地址

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	寄存器		有效计算		有效字节		校验
数据	0xAA	0x00	0x00	0x10	0x00	0x01	0x00	0xYY	sum

- 类型:写命令
- 从地址:0x00
- 寄存器地址:0x0010
- 0xYY 表示修改后的地址
- 功能:设置模块地址,断电后该地址不会丢失;

从机回复:

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	寄存器		有效计算		有效字节		校验
数据	0xAA	0x00	0x00	0x10	0x00	0x01	0x00	0xYY	sum

- 从地址设置为 0xYY (!!!注意:地址只取位[6:0], 其他位将被忽略)。
- 请注意:不要将从机地址设置为广播地址 0x7F。这个地址是留给一主多从网络。发送广播地址的命令,所有从机同时测量距离,但无测量结果回复。主机访问单一地址从机,才返回测量结果。

5.4.8 设置模块测量偏移量

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	寄存器		有效计算		有效	校验	
数据	0xAA	0x00	0x00	0x12	0x00	0x01	0xZZ	0xYY	sum

- 类型:写命令
- 从地址:0x00
- 寄存器地址:0x0012
- 0xYY表示要调整的偏移量
- 功能:设置测量偏移量

例如,如果偏移量 0xZZYY = 0x7B(+123),则为表示测量距离值将加上 123 毫米,如果偏移 0xZZYY =0xFF85(-123),表示测量距离值将减去 123 毫米。如果修改后,想回复出厂时的原测量值,只需要把偏移量设置为 0 即可。从机回复:

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	寄存器		有效计算		有效	校验	
数据	0xAA	0x00	0x00	0x12	0x00	0x01	0xZZ	0xYY	sum

5.4.9 打开或关闭激光器

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	寄存器		有效	计算	有效	字节	校验
数据	0xAA	0x00	0x01	0xBE	0x00	0x01	0x00	0xZZ	sum

■ 类型:写命令

- 从地址:0x00
- 寄存器地址:0x01BE
- 函数:打开或关闭激光束,如果 0xZZ = 0x01 激光打开,0xZZ = 0x00 激光关闭。

从机回复:

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	寄存器		有效计算		有效字节		校验
数据	0xAA	0x00	0x01	0xBE	0x00	0x01	0x00	0xZZ	sum

5.4.10 单次自动测量

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	寄存器		有效计	算	有效字	节	校验
数据	0xAA	0x00	0x00	0x20	0x00	0x01	0x00	0x00	0x21

- 类型:写命令
- 从地址:0x00
- 寄存器地址:0x0020
- 功能:启动从机在自动模式下进行单次测量,测量模式请参考 5.5 节。

从机回复:

字节	0	1	2	3	4	5	6:9	10:11	12
名称	首	地址	寄石	字器	有效	计算	有效距离值	信号质量	校验
数据	0xAA	0x00	0x00	0x22	0x00	0x03	0xAABBCCDD	0x0101	校验

- 类型:从机回复
- 从地址:0x00
- 寄存器地址:0x0022
- 功能:将测量结果回复给主机,测量结果= 0xAABBCCDD 毫米(数据帧 byte6=0xAA byte7=0xBB byte8=0xCC byte9=0xDD)和信号质量= 0x101,信号质量数值越小代表激光信号越强,距离结果可信度越高。

5.4.11 单次慢速测量

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	寄存	字器	有效	计算	有效	字节	校验
数据	0xAA	0x00	0x00	0x20	0x00	0x01	0x00	0x01	0x22

- 类型:写命令
- 从地址:0x00
- 寄存器地址:0 x0020
- 功能:启动模块在慢速模式下进行单次测量。
- 从机回复:与单次自动模式相同。

5.4.12 单次快速测量

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	寄存	字器	有效	计算	有效	字节	校验
数据	0xAA	0x00	0x00	0x20	0x00	0x01	0x00	0x02	0x23

- 类型:写命令
- 从地址:0x00
- 寄存器地址:0x0020
- 功能:启动模块在快速模式下进行单次测量。
- 从机回复:与单次自动模式相同。

5.4.13 启动连续自动测量

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	寄存	字器	有效	计算	有效	字节	校验
数据	0xAA	0x00	0x00	0x20	0x00	0x01	0x00	0x04	0x25

■ 类型:写命令

- 从地址:0x00
- 寄存器地址:0x0020
- 功能:发送一次指令,连续自动进行测量并连续返回距离值
- 从机回复:与单次自动模式相同。

5.4.14 启动连续慢测量

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	寄石	字器	有效	计算	有效	字节	校验
数据	0xAA	0x00	0x00	0x20	0x00	0x01	0x00	0x05	0x26

- 类型:写命令
- 从地址:0x00
- 寄存器地址:0x0020
- 功能:启动从机慢速连续测量。
- 从机回复:与单次自动模式相同。

5.4.15 启动连续快速距离测量

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	寄存	字器	有效	[计算	有效	字节	校验
数据	0xAA	0x00	0x00	0x20	0x00	0x01	0x00	0x06	0x27

- 类型:写命令
- 从地址:0x00
- 寄存器地址:0x0020
- 功能:启动从机在快速模式下进行连续测量。
- 从机回复:与单次自动模式相同。

5.4.16 从机应答错误

如果在测量阶段出现误差,激光测距模块将回复误差报告框:

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	寄有	产器	有效	计算	有效	字节	校验
数据	0xEE	0x00	0x00	0x00	0x00	0x01	0x00	0x0F	0x10

- 类型:从机回复
- 从地址:0x00
- 寄存器地址:0x0000
- 功能:向主机报告错误状态代码,错误代码=0x000F,更多错误代码请参考<u>第5.6 状态码</u>。

5.4.17 退出连续测量

主机处于连续测量状态时,发送一个字节 0x58(大写字符'X'),将立即停止连续测量模式。

5.4.18 启动多从机措施

主机向从地址 0x7F 发送单次测量命令,从机模块会同时工作测量距离,但没有数据返回,当主机访问每个从机时才返回测量结果。在主机发出读取测量结果命令之前,主机应读取从机的状态码,以确保从机在此过程中没有发生错误测量。

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	寄有	字器	有效	计算	有效	字节	校验
数据	0xAA	0x7F	0x00	0x20	0x00	0x01	0x00	0x00	0xA0

- 类型:写命令
- 从地址:0x00
- 寄存器地址:0x0020
- 功能:启动所有从机在自动模式下进行单次测量
- 从机回复:没有回复

发送此命令后,如果从机应答其状态,则主机轮询每个从机的地址状态码 0x0000,表示没有错误,然后发送读取测量结果命令来读取结果距离。每个从机的测量结果不会被覆盖,直到下一个成功的测量命令测出新的距离值。

5.5 测量模式 Measure Modes

测量模式有两种,一种是单次测量,一种是连续测量;

- 单次测量: 主机发送一次测量指令,模块工作一次,激光点亮一次,返回一条测量距离值;
- 连续测量: 主机发送一次测量指令,模块连续工作,激光持续点亮,连续返回测量距离值; 如果想停止连续测量, 主机需要发送 1 字节 0x58(ASCII 中的大小写字符"X")。

每个测量模式有3种工作方式:

- 1. 自动测量:据返回的距离值和信号质量,自动调整测量速度和距离精度;
- 2. 慢速测量:测量速度最慢,但测量的距离值精度最高;
- 3. 快速测量:测量的距离值精度相对较低,但测量速度最快。

方式	自动	慢速	快速
模式			
单次测量	单次自动	单次慢速	单次快速
连续测量	连续自动	连续慢速	连续快速
测量速度	自动	慢	快
测量精度	自动	高	低

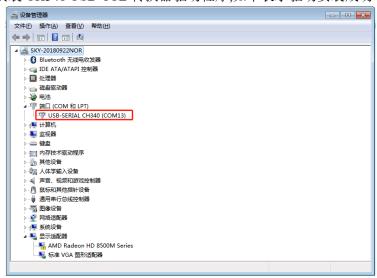
5.6 状态码 Status Codes

状态码	描述
0x0000	无错误
0x0001	输入电压过低,供电电压应≥2.2V
0x0002	内在错误,没关系
0x0003	模块温度过低(<-20°C) 耐高低温版本无此报错
0x0004	模块温度过高(>+40℃) 耐高低温版本无此报错
0x0005	目标超出射程
0x0006	无效测量结果
0x0007	背景光太强
0x0008	激光信号太弱
0x0009	激光信号太强
0x000A	硬件故障 1
0x000B	硬件故障 2
0x000C	硬件故障 3
0x000D	硬件故障 4
0x000E	硬件故障 5
0x000F	激光信号不稳定
0x0010	硬件故障 6
0x0011	硬件故障 7
0x0081	无效

六、操作指导 Operation instruction

6.1 模块按照下图连接到 USB-TTL 转换器

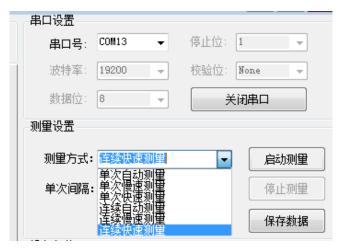
- 如果用的 USB-TTL 和我们的一样,绿线 PWREN 可不接;
- 如果绿线您接通了,用串口助手时请务**必勾选 DTS**;
- 如果您选用的其他款 USB-TTL,**请接上拉电阻**(红线 VCC 和黄线 TXD 之间接一个电阻);
- 如果 TTL 信号接单片机,**请接上拉电阻**(VCC 与 TXD 之间接一个电阻)。



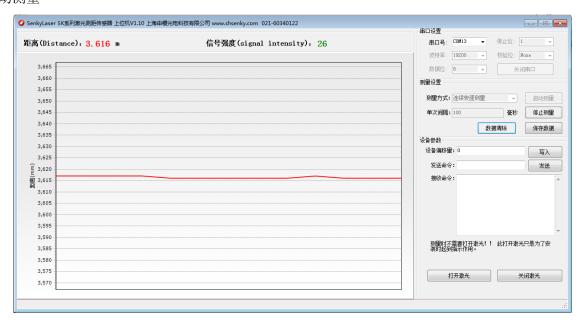
6.2 测试演示软件

在开始测试之前,我们需要确认:

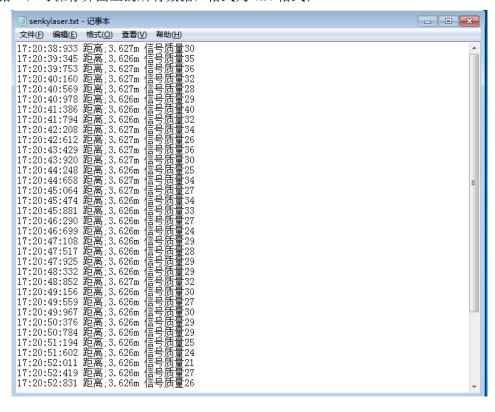
1. 在您的计算机上插入并安装 CH341 USB-TTL 转换器驱动程序;如下表示驱动安装成功



4、弹出如下窗口: 串口号选择正确, 点击"打开串口"



5、选择测量方式



性能指标		测量模式	
1生月七1日7小	自动	慢速	快速
精度	自动	高	低
响应	自动	慢	快

6、点击启动测量

- 7、点击"停止测量",激光熄灭,数据不返回;
- 8、点击"数据清除",可清除软件显示数据;
- 9、点击"保存数据",可保存界面上的所有数据,格式为 txt 格式;

